Abstract

Carnosine (β-alanyl-L-histidine) and its methylated derivatives: anserine (β-alanyl-Nπ- methyl-L-histidine) and balenine (β-alanyl-Nτ-methyl-L-histidine) are abundant constituents of excitable tissues of vertebrates. While carnosine and anserine are present at high concentrations and in variable proportions in skeletal muscle and brain of most vertebrates, balenine appears to be rather more abundant in marine mammals and certain reptilian species. Since the discovery of these compounds at the beginning of 20th century, numerous studies have been devoted to identification of the biochemical and physiological properties of carnosine and related dipeptides. These led to the discovery of the pHbuffering, metal-chelation and antioxidant, capabilities of carnosine and anserine, although no definitive ideas concerning their physiological role has yet been formulated. Only recently the molecular identities of the enzymes catalyzing synthesis of carnosine (carnosine synthase, EC 6.3.2.11) and anserine (carnosine N-methyltransferase, EC 2.1.1.22) have been elucidated, which has given a new insight into their metabolism in vertebrates. These findings have opened new research areas and provide authentic opportunities for understanding the biological function of these "enigmatic" dipeptides. This review aims to summarize recent advances in our knowledge concerning enzymes responsible for the biosynthesis of carnosine and related dipeptides and to evaluate their importance in vertebrate physiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.