Abstract

Photocatalytic inactivation has been proved to be an effective strategy for controlling biohazards. Herein, the novel Ag deposited phosphorus and sulfur co-doped g-C3N4 (PSCN) composites with different Ag content were constructed via a facile calcination combining with biogenic-reduction method for inactivating Escherichia coli (E. coli). The detailed characterization results indicated that P and S elements were successfully co-doped into g-C3N4 (CN) lattice and Ag nanoparticles (NPs) were evenly deposited on the surface of PSCN with diameter range of 4–20 nm. The Ag/PSCN at depositing amount of 4 wt% (Ag/PSCN-4) achieved the strongest photocatalytic inactivation along with excellent stability, which could completely inactivate 7.0 log cells of E. coli within 60 min of visible light irradiation. This improved bactericidal performance was mainly attributed to the synergistic effects of P-S co-doped together with Ag deposition, which resulted in the increased visible light utilization, the improved separation and transfer efficiency of photo-induced charge carriers. Moreover, active species trapping experiments revealed that the generated superoxide radicals (O2−) and holes (h+) played the significant roles in photocatalytic inactivation process. Our present work presented a promising and environmentally friendly strategy to enhance the photocatalytic capacities of CN based composites for pathogens inactivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call