Abstract

Thymol and usnic acid as the important secondary metabolites of respectively Artemisia haussknechtii and Protoparmeliopsis muralis were used for reduction and stabilizing of AgNO3 and CuSO4 in metal nanoparticles (MNPs) biosynthesis process. Antibacterial effects of prepared Ag-thymol (ATNPs), Ag-usnic acid (AUNPs), Cu-thymol (CTNPs), and Cu-usnic acid (CUNPs) on multi drug resistant (MDR) bacteria including methicillin-resistant Staphylococcus aureus (MRSA) (gram positive), Acinetobacter baumannii (A52), and Klebsiella pneumonia (K38) (gram negative) were compared with thymol, usnic acid, AgNO3, CuSO4, and tetracycline. Results of this study showed higher antibacterial activities of usnic acid, CUNPs, and CTNPs with MIC/MBC values (20, 40, and 40 μg/mL, respectively) than ATNPs and AUNPs against MRSA bacteria. Leakage of macromolecules involving nucleic acids and proteins from bacteria under stress of MNPs, thymol, and usnic acid proved significant antibacterial activities of usnic acid, and Cu NPs. In addition, SEM images illustrated different patterns of aggregation in biofilms resulted from interactions of these antibacterial agents with bacterial macromolecules. Totally, this investigation illustrated new green method of Ag and Cu NPs biosynthesis with suitable antibacterial properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.