Abstract

The enzymatic conversion of the D-erythro-dihydroneopterin triphosphate [H2-neopterin-(P)3] to sepiapterin occurs via a nonphosphorylated intermediate as shown by others. We have developed a high-performance liquid chromatography assay for this intermediate and have found that the intermediate (X) and two related compounds (X1 and X2) can be formed nonenzymatically under certain conditions from H2-neopterin-(P)3. The reaction is catalyzed by tris(hydroxymethyl)aminomethane, dependent upon H2-neopterin-(P)3 concentration, significant at temperatures greater than 80 degrees C, and maximal between pH 8.5 and 9.5 (as determined at 25 degrees C). All three compounds were purified, and it was found that both X and X1 can serve as substrates for the enzymatic, NADPH-dependent synthesis of sepiapterin. From the kinetics of formation from H2-neopterin-(P)3 and the similarity of the ultraviolet spectra, it is clear that X, X1, and X2 are closely related compounds. None of the three compounds is reduced by NaBH4; only X1 is sensitive to periodate oxidation. All three can be oxidized with iodine to give rise to highly fluorescent compounds that in turn can be reduced by NaBH4 to give rise to the respective parent compounds. These latter observations indicate that X, X1, and X2 are dihydropterins. These results are discussed relative to the proposed structures for enzymatically produced X. The methods described for the nonenzymatic synthesis of X and its purification should allow preparation of large amounts of X for future study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.