Abstract
This study evaluated the biogenesis of silver nanoparticles (NPs) using Microbacterium mitrae and its possibilities against phytopathogens. Silver nanoparticles have been synthesized using a simple protocol and the synthesized NPs have been characterized using UV visible spectroscopy, particle size analyzer, transmission electron microscope (TEM). Small-sized, stable silver nanoparticles in the range of 10-25 nm have been reported. Their antimicrobial activity against three phytopathogens i.e. Alternaria solani, Thanatephorus cucumeris and Botryodiplodia theobromae, was studied. The nanoparticles showed effective antimicrobial activity against all the tested fungal pathogens under in vitro conditions. The genotoxicity of NPs was also studied using sister chromatid exchange analysis on human lymphocytes and no adverse effects were observed up to the concentration of 100μg/ml. Efficient control against early blight has been observed within cytotoxicity limits in pot study, preventing the disease outbreak in tomato plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.