Abstract

In the present study the microbial biosynthesis of silver nanoparticles (AgNPs) by secondary metabolites of Streptomyces sp. SS2 in an eco-friendly approach has been reported. The Streptomyces sp. SS2 was isolated from the soil sediment of Similipal Biosphere Reserve. The identification of this strain was determined by phenotypical characteristics (morphological and biochemical) and molecular characterization method using 16s rDNA sequencing. The morphological study was also done by high-resolution scanning electron microscopy. The preliminary characterization of biosynthesized silver nanoparticle was carried out using UV-Vis spectrum analysis, which showed an absorption peak at 420nm corresponding to plasmon absorption of silver. The average size and charge (zeta potential) of the particles were found to be 67.95±18.52nm and -17.7±5.30mV, respectively. The functional groups were identified by FTIR studies and their morphology (round and spherical shape) was determined by scanning electron microscopy. The synthesized AgNPs exhibited excellent antibacterial activity against Escherichia coli (MTCC 1089), Bacillus subtilis (MTCC 7164), Staphylococcus epidermis (MTCC 3615), Vibrio cholerae (MTCC 3904) and Staphylococcus aureus (MTCC 1144). These biotechnological approaches of synthesis of nanoparticles can direct a new path in biomaterial sciences and enrich biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call