Abstract

Silver nanoparticles (AgNPs) were synthesized from AgNO3 using rice straw biomass as the reducing agent at room temperature via light irradiation. Full wavelength scanning with UV/Vis spectrophotometer was used to study the effect of light intensity, reaction time, and concentrations of rice straw biomass and AgNO3 during AgNPs synthesis. Surface plasmon resonance (SPR) showed that the peak wavelength of synthesized silver nanoparticles arose at 425 nm, the optimal light intensity observed was 60,000 lx, and the optimal reaction time was 140 min. The optimum concentrations of the rice straw biomass and AgNO3 used were 4 mg/mL and 2 mM, respectively. The AgNPs were characterized by X-ray diffraction (XRD) analysis. The zeta potential of AgNPs reached -21.2 mV. In addition, the AgNPs synthesized by rice straw biomass revealed antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphyloccus aureus. The inhibition rate reached about 97.17 ± 2.01% when the concentration of AgNPs solution used was 8 μg/mL. In the detection of antimicrobial effect of AgNPs and antibiotics, the antibacterial activity was found to be superior to that of antibiotics alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.