Abstract

Chain Length specificity in alkyl glycerolipid biosynthesis was studied with microsomal preparations from 19-day-old rat brain. Saturated alcohols ranging from 12 to 22 carbon atoms were incorporated at different rates into alkyl dihydroxyacetone phosphate, the first intermediate in ether lipid biosynthesis. The rate of alkyl dihydroxyacetone phosphate formation was highest with hexadecanol and alcohols of either longer or shorter chain length were utilized much less efficiently. The monounsaturated octadecenol was incorporated more readily than any of the saturated alcohols. Rat brain microsomes were also found to reduce saturated fatty acids ranging from 12 to 22 carbon atoms, and oleic acid to the corresponding alcohols in the presence of ATP, coenzyme A, Mg 2+, and NADPH. Chain length selectivity in the reduction was less pronounced than that in alkyl DHAP synthesis. The data indicate that the alkyl and alk-1-enyl composition of rat brain ether lipids is controlled by substrate specificity in the formation of both fatty alcohol and alkyl dihydroxyacetone phosphate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.