Abstract

Thyrotropin-releasing hormone immunoreactivity (TRH-IR) was measured in isolated islets and in medium from rat pancreatic islets maintained in organ culture. TRH-IR in methanol extracts of both islets and culture medium was eluted in the same position as synthetic TRH by ion-exchange and gel chromatography and exhibited dilution curves parallel with synthetic TRH in radioimmunoassay. [3H]Histidine was incorporated into a component that reacted with TRH antiserum and had the same retention time as synthetic TRH on reversed-phase high-performance liquid chromatography. A continuous release of TRH-IR into the culture medium was observed from islets of both 5-d-old (newborn) and 30-d-old (adult) rats with a maximum on the second day of culture (28.7 +/- 7.0 and 13.3 +/- 3.6 fmol/islet per d, respectively). The content of TRH-IR was higher in freshly isolated islets from newborn rats (22.4 +/- 2.3 fmol/islet) than in adult rat islets, which, however, increased their content from 1.3 +/- 0.5 to 7.0 +/- 0.5 fmol/islet during the first 3 d of culture. Adult rat islets maintained in medium with 20 mM glucose released significantly more TRH-IR than islets in 3.3 mM glucose medium (13.0 +/- 0.7 vs. 4.3 +/- 0.3 fmol/islet per d). In contrast, the content of TRH-IR in the islets was reversed (1.4 +/- 0.3 vs. 4.7 +/- 1.6 fmol/islet). By exposing islets from newborn rats to streptozotocin 0.7 mg/ml for 30 min, a 50% reduction of TRH-IR content in the islets compared with the non-treated islets was seen after subsequent culture for 7 d. The insulin content was reduced by 80%, while glucagon was slightly elevated. In conclusion, these results indicate that TRH is synthesized in rat pancreatic islets, and that the release is stimulated by glucose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.