Abstract
Polypeptide synthesis and morphogenesis of a group C rotavirus (AmC-1) adapted to a continuous swine testicular cell line was examined. SDS-PAGE analysis of 35S methionine labeled infected cell lysates revealed 9 viral polypeptides (122, 98, 79, 78, 43, 41, 35, 24, and 20 kD). Viral polypeptide synthesis appeared to be maximal at 7-10h post infection. Purified group C virus grown in the presence of trypsin was found to contain seven structural polypeptides (122, 98, 79, 53, 43, 41, and 30 kD) by protein blotting and five polypeptides (98, 79, 78, 43, and 41 kD) by immunoprecipitation with a hyperimmune rabbit antisera. Tunicamycin treatment, Concanavalin A binding, protein blotting, endo-H treatment and 2,6H-mannose labeling suggested that group C rotavirus contains one structural glycoprotein (41 kD) with a corresponding precursor mol. wt. of 37 kD and one not previously identified nonstructural glycoprotein (24 kD) with a corresponding precursor mol. wt. of < or = 20 kD. Electron microscopy of infected swine testicular cells revealed an assembly process for group C rotavirus similar to group A, with single-shelled particles budding through the rough endoplasmic reticulum with concomitant acquisition of a transient membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.