Abstract

Zincoxide nanoparticles (ZnO NPs) are among the most produced and used nanomaterials worldwide, and in recent times these nanoparticles have also been incorporate in plant science and agricultural research. The present study was planned to synthesize ZnO NPs biologically using Ochradenus arabicus leaves and examine their effect on the morphology and physiology properties of Maerua oblongifolia cultured in vitro. ZnO NPs were characterized by UV–visible spectroscopy (UV–vis), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy, which demonstrated hexagonal shape nanoparticles of size ranging from 10 to 50 nm. Thus, the study uncovered an efficient, eco-friendly and simple technique for biosynthesis of multifunctional ZnO NPs using Ochradenus arabicus following growth of Maerua oblongifolia shoots in different concentrations of ZnO NPs (0, 1.25, 2.5, 5, 10, or 20 mg L−1) in Murashige and Skoog medium. Remarkable increases in plant biomass, photosynthetic pigments, and total protein were recorded up to a concentration of 5 mg L−1; at the same time, the results demonstrated a significant reduction in lipid peroxidation levels with respect to control. Interestingly, the levels of proline and the antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) activities were increased significantly in response to all ZnO NP treatments. These findings indicate that bioengineered ZnO NPs play a major role in accumulation of biomass and stimulating the activities of antioxidant enzymes in plant tissues. Thus, green-synthesized ZnO NPs might be of agricultural and medicinal benefit owing to their impacts on plants in vitro.

Highlights

  • Nanotechnology nowadays is the focus of scientific community interest and has taken hold in all fields of science due to the necessity of applications of nanomaterials in many aspects of human endeavor, such as industry, business, medicine, public health, and agriculture [1]

  • The reducing of O. arabicus leaves extract caused a visible color change on stirring for 24 h; the color change of the solution from white to pale yellow was the preliminary evidence of synthesis of Zincoxide nanoparticles (ZnO NPs)

  • UV-Vis spectroscopy is an ideal method that is usually performed for the confirmation and characterization of the synthesis of zinc oxide (ZnO) NPs based on surface plasmon resonance (SPR) [32]

Read more

Summary

Introduction

Nanotechnology nowadays is the focus of scientific community interest and has taken hold in all fields of science due to the necessity of applications of nanomaterials in many aspects of human endeavor, such as industry, business, medicine, public health, and agriculture [1]. Many studies have been carried out on the vastly used nanomaterials (NMs), such as fullerenes, ZnO, TiO2, CuO, and Ag [5] Among these important nanomaterials, zinc oxide (ZnO) engineered nanoparticles (ENPs) have a unique position [6]. The main idea behind the green synthesis of ZnO NPs is that the natural materials (plants and microorganism) contain phytochemicals which act as both reducing as well as stabilizing (capping) agents. They reduce the metal (zinc) to the 0-valence state and through calcinations, oxide may be added to the metal [9]. At certain concentrations in plant cell cultures, ZnO NPs are reported to play an essential role in enhancing growth, seed germination, photosynthetic efficiency, chlorophyll content, starch content, and notably secondary metabolites production [13,14,15,16,17]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call