Abstract

BackgroundThe present study aims to apply an efficient eco-friendly and inexpensive process for green synthesis of silver nanoparticles (AgNPs) through the mediation of fungal proteins from Aspergillus fumigatus DSM819, characterization, and its application as antimicrobial finishing agent in textile fabrics against some infectious microorganisms. ResultsOptimum conditions for AgNP biosynthesis could be achieved by means of using 60% (v/v) of cell-free filtrate (CFF) and 1.5 mM of AgNO3 at pH 10.0 after 90 min. The obtained AgNPs were of spherical shape with 90% of distribution below than 84.4 nm. The biosynthesized AgNPs exerted an antimicrobial activity against the studied pathogenic microorganisms (E. coli, B. mycoides, and C. albicans). In addition, IC50 values against in vitro tumor cell lines were found to be 31.1, 45.4, 40.9, and 33.5 μg/ml for HCT116, A549, MCF7, and PC3, respectively. Even with a very low concentration (0.25%), the treated PET/C fabrics by AgNPs exerted an antimicrobial activity against E. coli, B. mycoides, and C. albicans to give inhibition zone diameter of 15, 15, and 16 mm, respectively. ConclusionsThe green biosynthesis approach applied in this study is a non-toxic alternative to the traditional chemical and physical methods, and would be appropriate for biological large-scale production and prospective treatments. Graphical abstract▪

Highlights

  • The present study aims to apply an efficient eco-friendly and inexpensive process for green synthesis of silver nanoparticles (AgNPs) through the mediation of fungal proteins from Aspergillus fumigatus DSM819, characterization, and its application as antimicrobial finishing agent in textile fabrics against some infectious microorganisms

  • Biosynthesized AgNP UV–visible spectroscopy The UV–visible spectroscopy results using A. fumigatus DSM819 filtrate indicate the ability of A. fumigatus DSM819 to form AgNPs extracellulary through reduction of Ag+ to form the AgNPs

  • The distinct and typical surface plasmon resonance (SPR) band for AgNPs was obtained in the region of 410 nm as a result of AgNP formation, in comparison to controls using cell-free filtrate (CFF) or silver nitrate solution separately, where there is no reddish brown color development and subsequently no typical SPR band for AgNPs, demonstrating the absence of abiotic reduction of silver nitrate

Read more

Summary

Introduction

The present study aims to apply an efficient eco-friendly and inexpensive process for green synthesis of silver nanoparticles (AgNPs) through the mediation of fungal proteins from Aspergillus fumigatus DSM819, characterization, and its application as antimicrobial finishing agent in textile fabrics against some infectious microorganisms. The advantages of using microbiological synthesis of silver nanoparticles (AgNPs) over chemical method has gained more importance during the last few years due to its higher and faster production and being lower cost and eco-friendly [33]. Investigations on silver nanoparticles (AgNPs) and their colloidal form exhibit catalytic and antibacterial properties, high conductivity, and chemical stability [29]. Biological methods were found to be the most proper technique for the preparation of AgNPs, as NPs produced

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.