Abstract

The growing industrial and medical use of gold nanoparticles (AuNPs) requires environmentally friendly methods for their production using microbial biosynthesis. The ability of actinobacteria of the genus Rhodococcus to synthesize AuNPs in the presence of chloroauric acid (HAuCl4) was studied. The effect of elevated (0.8-3.2 mM) concentrations of HAuCl4 on bacterial viability, morphology, and intracellular accumulation of AuNPs by different Rhodococcus species was shown. An increase in surface roughness, a shift of the zeta potential to the positive region, and the formation of cell aggregates of R. erythropolis IEGM 766 and R. ruber IEGM 1135 during nanoparticle synthesis were revealed as bacterial adaptations to toxic effects of HAuCl4. The possibility to biosynthesize AuNPs at a five times higher concentration of chloroauric acid compared to chemical synthesis, for example, using the citrate method, suggests greater efficiency of the biological process using Rhodococcus species. The main parameters of biosynthesized AuNPs (size, shape, surface roughness, and surface charge) were characterized using atomic force microscopy, dynamic and electrophoretic light scattering, and also scanning electron microscopy in combination with energy-dispersive spectrometry. Synthesized by R. erythropolis spherical AuNPs have smaller (30-120 nm) dimensions and are positively (12 mV) charged, unlike AuNPs isolated from R. ruber cells (40-200 nm and -22 mV, respectively). Such differences in AuNPs size and surface charge are due to different biomolecules, which originated from Rhodococcus cells and served as capping agents for nanoparticles. Biosynthesized AuNPs showed antimicrobial activity against Gram-positive (Micrococcus luteus) and Gram-negative (Escherichia coli) bacteria. Due to the positive charge and high dispersion, the synthesized by R. erythropolis AuNPs are promising for biomedicine, whereas the AuNPs formed by R. ruber IEGM 1135 are prone to aggregation and can be used for biotechnological enrichment of gold-bearing ores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.