Abstract

Remote patient monitoring is a critical component of digital medicine, and the COVID-19 pandemic has further highlighted its importance. Wearable sensors aimed at noninvasive extraction and transmission of high-fidelity physiological data provide an avenue toward at-home diagnostics and therapeutics; however, the infrastructure requirements for such devices limit their use to areas with well-established connectivity. This accentuates the socioeconomic and geopolitical gap in digital health technology and points toward a need to provide access in areas that have limited resources. Low-power wide area network (LPWAN) protocols, such as LoRa, may provide an avenue toward connectivity in these settings; however, there has been limited work on realizing wearable devices with this functionality because of power and electromagnetic constraints. In this work, we introduce wearables with electromagnetic, electronic, and mechanical features provided by a biosymbiotic platform to realize high-fidelity biosignals transmission of 15 miles without the need for satellite infrastructure. The platform implements wireless power transfer for interaction-free recharging, enabling long-term and uninterrupted use over weeks without the need for the user to interact with the devices. This work presents demonstration of a continuously wearable device with this long-range capability that has the potential to serve resource-constrained and remote areas, providing equitable access to digital health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.