Abstract
Bubbles reside at the water surface before bursting, emitting droplets that can contain chemicals and pathogens linked to disease and contamination. We discover that bacterial secretions enhance the lifetime of bubbles. We also reveal and elucidate two distinct regimes of thinning for such contaminated bubbles. Initially, marginal regeneration governs their thinning rate, similarly to clean water bubbles. However, due to their enhanced lifetime, it is eventually evaporation that governs their thinning, thus also dramatically decreasing their thickness at burst. We derive and experimentally validate the expression for the critical timescale at which the transition between the two regimes occurs. The shift in thinning law makes the droplets produced by contaminated bubbles smaller, faster, and more numerous than those produced by clean bubbles. Our findings suggest that microorganisms can manipulate the aging physics of surface bubbles to enhance their own water-to-air dispersal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.