Abstract

Increasing environmental concerns have brought natural surfactant produced by microorganisms into limelight due to their lesser toxicity, biodegradable nature, and retention of activity at extreme conditions. In the present investigation, the surfactant production perspective of capsulated Gram-negative bacilli Klebsiella pneumoniae ssp. ozaenae BK34 was explored. It was identified on the basis of PCR amplification of conserved region of 16SrRNA using species specific primers. Highest oil displacement and emulsification (E24) index of 6.8 cm and 20% along with 4.38-fold increase in biomass were attained using olive oil (2% (v/v)) as substrate. Incorporation of urea at 0.5% (w/v) concentration increased the oil displacement, E24 index, and drop diameter to 9.2 cm, 77.50%, and 0.80 cm, respectively, accompanied by 5.38-fold increase in biomass production. Biosurfactant level was recorded maximum at 30 °C as apparent from the oil displacement of 9.3 cm and E24 index of 75%. Reduction in incubation temperature to 25 °C abated oil displacement (5.2 cm) and E24 index (17.66%). Biosurfactant production was also appeared to be pH sensitive as shifting pH from 7.0 to 6.0 or 8.0 reduced the E24 index from 75 to 35% and 25%, respectively. Inoculum of stationary phase bacterial biomass at the proportion of 0.05% (w/v) was found adequate in triggering maximum biosurfactant production while the log phase biomass delayed the production significantly. Acid precipitation method was able to yield 7 g/L biosurfactant at pH 2. The surfactant was allocated to glycolipopeptide class on the basis of FTIR spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call