Abstract

The aim of the present study was to investigate the ability of Bacillus megaterium IBBPo17 (GenBank KX499518) cells to produce biosurfactant when the growth was done in the presence of long-chain n-alkane n-hexadecane on medium supplemented with yeast extract, proteose peptone, starch, or cellulose. B. megaterium IBBPo17 revealed a higher growth in the presence of n-hexadecane when the medium was supplemented with yeast extract, proteose peptone, or starch, compared with cellulose. Biosurfactant production was higher when B. megaterium IBBPo17 was grown in the presence of n-hexadecane on yeast extract, proteose peptone, or starch supplemented medium, compared with biosurfactant produced on cellulose supplemented medium. A direct correlation between cell growth and biosurfactant production was observed. When the growth of B. megaterium IBBPo17 cells was higher, the decrease in pH values of the medium was higher too, and more amount of CO2 was released. Changes in cell morphology, aggregation of the cells in clusters, and biofilm formation were observed when B. megaterium IBBPo17 was grown in the presence of n-hexadecane on medium supplemented with yeast extract, proteose peptone, starch, or cellulose. Due to its physiological abilities, this Gram-positive bacterium could be a promising candidate for the bioremediation of petroleum hydrocarbon polluted environments.

Highlights

  • The aim of the present study was to investigate the ability of Bacillus megaterium IBBPo17 (GenBank KX499518) cells to produce biosurfactant when the growth was done in the presence of long-chain n-alkane n-hexadecane on medium supplemented with yeast extract, proteose peptone, starch, or cellulose

  • The growth of B. megaterium IBBPo17 cells in the presence of 5% n-hexadecane on medium supplemented with yeast extract, proteose peptone, starch, or cellulose was monitored by measuring the optical density at 660 nm (OD660), pH, and CO2 released (Table 1)

  • Biosurfactant activity was higher when B. megaterium IBBPo17 was grown in the presence of n-hexadecane on yeast extract, proteose peptone, or starch supplemented medium, compared with the activity of biosurfactant produced by the cells on cellulose

Read more

Summary

Introduction

Abstract: The aim of the present study was to investigate the ability of Bacillus megaterium IBBPo17 (GenBank KX499518) cells to produce biosurfactant when the growth was done in the presence of long-chain n-alkane n-hexadecane on medium supplemented with yeast extract, proteose peptone, starch, or cellulose. B. megaterium IBBPo17 revealed a higher growth in the presence of n-hexadecane when the medium was supplemented with yeast extract, proteose peptone, or starch, compared with cellulose. Biosurfactant production was higher when B. megaterium IBBPo17 was grown in the presence of n-hexadecane on yeast extract, proteose peptone, or starch supplemented medium, compared with biosurfactant produced on cellulose supplemented medium. Aggregation of the cells in clusters, and biofilm formation were observed when B. megaterium IBBPo17 was grown in the presence of n-hexadecane on medium supplemented with yeast extract, proteose peptone, starch, or cellulose. Due to its physiological abilities, this Gram-positive bacterium could be a promising candidate for the bioremediation of petroleum hydrocarbon polluted environments

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.