Abstract

SummaryExploiting new carbon supports with adjustable metal-support interaction and low price is of prime importance to realize the maximum active iron efficiency and industrial-scale application of Fe-based catalysts for Fischer-Tropsch synthesis (FTS). Herein, a simple, tunable, and scalable biochar support derived from the sugarcane bagasse was successfully prepared and was first used for FTS. The metal-support interaction was precisely controlled by functional groups of biosugarcane-based carbon material and different iron species sizes. All catalysts synthesized displayed high activities, and the iron-time-yield of Fe4/Cbio even reached 1,198.9 μmol gFe−1 s−1. This performance was due to the unique structure and characteristics of the biosugarcane-based carbon support, which possessed abundant C−O, C=O (η1(O) and η2(C, O)) functional groups, thus endowing the moderate metal-support interaction, high dispersion of active iron species, more active ε-Fe2C phase, and, most importantly, a high proportion of FexC/Fesurf, facilitating the maximum iron efficiency and intrinsic activity of the catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.