Abstract

Di-butyl phthalate (DBP) is an extensively applied synthetic plasticizer, toxic organic compound with elevated concentrations in aquatic and terrestrial ecosystem that cause serious risk to the human health. A marine bacterium Rhodovulum sp. DBP07 isolated from sea water with proficient of efficiently degrading DBP. The maximum DBP degradation (70.2%) and the cell growth (1.3 OD600nm) were observed at 600 mg/L. The DBP degradation characteristics of the isolate Rhodovulum sp. DBP07 with diverse preliminary concentrations of DBP was found to be 200 ˃ 400 ˃ 600 ˂ 800 ˂ 1000 mg/L DBP. Glucose was identified as most favorable nutrient factor for the enhanced growth and showed 79.8 and 77.4% of degradation rate at 5.0 and 2.0 g/L respectively. The influence of the carbon sources on DBP degradation was found to be Glucose ˃ fructose ˃ sucrose ˃ maltose ˃ lactose ˃ citric acid ˃ starch. Box-Behnken (BBD) statistical optimization results showed enhanced DBP biodegradation rate (91.1%) at pH 7.0, 3% of NaCl concentration with 3 days of incubation. Two intermediate compounds were observed in the retention times of 10.8 and 12.2 which are identified as diethyl phthalate (DEP) and mono-nbutyl phthalate (MBP) using Gas chromatography mass spectroscopy (GC-MS). Furthermore, the phthalate (pht) gene expression pattern under DBP stress was analyzed using RT-qPCR and the maximum fold change (5.7 fold) was observed at 3 day of incubation. Overall, the observed results indicate the possibility of utilizing Rhodovulum sp. for remediation of DBP contaminated environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call