Abstract

Biostatistics versus machine learning: from traditional prediction models to automated medical analysis Machine learning is increasingly applied to medical data to develop clinical prediction models. This paper discusses the application of machine learning in comparison with traditional biostatistical methods. Biostatistics is well-suited for structured datasets. The selection of variables for a biostatistical prediction model is primarily knowledge-driven. A similar approach is possible with machine learning. But in addition, machine learning allows for analysis of unstructured datasets, which are e.g. derived from medical imaging and written texts in patient records. In contrast to biostatistics, the selection of variables with machine learning is mainly data-driven. Complex machine learning models are able to detect nonlinear patterns and interactions in data. However, this requires large datasets to prevent overfitting. For both machine learning and biostatistics, external validation of a developed model in a comparable setting is required to evaluate a model’s reproducibility. Machine learning models are not easily implemented in clinical practice, since they are recognized as black boxes (i.e. non-intuitive). For this purpose, research initiatives are ongoing within the field of explainable artificial intelligence. Finally, the application of machine learning for automated imaging analysis and development of clinical decision support systems is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call