Abstract

As a “chemical antibody”, oligonucleotide aptamers can specifically bind to their target molecules. However, clinical potential of aptamers in disease diagnosis is not yet fully explored. Using a tumor cell-based selection protocol, we developed single-stranded DNA aptamers for Hodgkin lymphoma (HL) tumor cells. The aptamers specifically bound to HL cells with a high affinity, reaching maximal cell binding at 10 nM final concentration. Importantly, the aptamers were able to selectively detect HL cells and did not react to other tumor or blood cells in mixed samples, indicating that the aptamers can be used as a specific probe for in vitro analysis of HL cells. Moreover, due to the inherent properties of DNA, the aptamers were stable in human serum, suggesting potential for in vivo detection of HL tumor cells.

Highlights

  • Clinical management of lymphoma is highly dependent on classification and grouping of lymphoma based on the morphology and immunophenotyping [1,2].The next-generation sequencing technologies and gene expression profiles have not yet made a significant contribution towards the Sensors 2013, 13 determination of new molecular subtypes or categories of lymphoma [3,4,5,6]

  • Lymphomas are classified as Hodgkin (HL) and non-Hodgkin lymphoma

  • Flow cytometry analysis of the competition experiment, with simultaneous incubation of HDLM2 cells with 10-fold excess unlabeled CD30 aptamer C2NP and Cy3-labeled PS1 or PS1NP, revealed that the presence of unlabeled aptamer C2NP did not have any effect on the binding of either PS1 or PS1NP aptamer (Figure 3b), indicating that neither aptamer targeted the CD30 receptors on these cells. This was confirmed by a competition experiment with the CD30 antibody, which showed there is no competition between PS1 or PS1NP and the CD30 antibody (Figure 3c). These results indicate that the isolated aptamers PS1 and PS1NP bind a highly specific marker expressed on HL and anaplastic large cell lymphoma (ALCL) cells, which is not CD30

Read more

Summary

Introduction

Clinical management of lymphoma is highly dependent on classification and grouping of lymphoma based on the morphology and immunophenotyping [1,2].The next-generation sequencing technologies and gene expression profiles have not yet made a significant contribution towards the Sensors 2013, 13 determination of new molecular subtypes or categories of lymphoma [3,4,5,6]. Lymphoid neoplasms recognized by the International Lymphoma Study Group are classified in three major groups, namely, B-cell neoplasms, T-cell neoplasms, and Hodgkin lymphoma [8,9] These groups, in turn, consist of multiple distinct clinicopathological entities, such as follicular lymphoma, Burkitt lymphoma, anaplastic large cell lymphoma (ALCL), etc., based on their immunophenotype, and molecular and clinical features [10]. This current classification allows for gray-zone or borderline lymphomas with features of both Hodgkin and non-Hodgkin lymphoma (NHL) [11,12,13,14]. Aptamers provide a new toolbox for phenotyping lymphomas with many advantages over antibodies

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.