Abstract

Temperature is one of the key constraints on the spatial extent, physiological and phylogenetic diversity, and biogeochemical function of subsurface life. A model system to explore these interrelationships should offer a suitable range of geochemical regimes, carbon substrates and temperature gradients under which microbial life can generate energy and sustain itself. In this theory and hypothesis article, we make the case for the hydrothermally heated sediments of Guaymas Basin in the Gulf of California as a suitable model system where extensive temperature and geochemical gradients create distinct niches for active microbial populations in the hydrothermally influenced sedimentary subsurface that in turn intercept and process hydrothermally generated carbon sources. We synthesize the evidence for high-temperature microbial methane cycling and sulfate reduction at Guaymas Basin – with an eye on sulfate-dependent oxidation of abundant alkanes – and demonstrate the energetic feasibility of these latter types of deep subsurface life in previously drilled Guaymas Basin locations of Deep-Sea Drilling Project 64.

Highlights

  • Reviewed by: Purificación López-García, Centre National de la Recherche Scientifique, France D’Arcy Renee Meyer-Dombard, University of Illinois at Chicago, USA

  • We synthesize the evidence for high-temperature microbial methane cycling and sulfate reduction at Guaymas Basin – with an eye on sulfate-dependent oxidation of abundant alkanes – and demonstrate the energetic feasibility of these latter types of deep subsurface life in previously drilled Guaymas Basin locations of Deep-Sea Drilling Project 64

  • The extent and function of subsurface life in Guaymas Basin has not been probed since Leg 64 of the Deep-Sea Drilling Program (DSDP) targeted the massive sediments of Guaymas Basin (Curray et al, 1979; Curray and Moore, 1982) and demonstrated microbial methanogenesis in the deep www.frontiersin.org

Read more

Summary

Introduction

Reviewed by: Purificación López-García, Centre National de la Recherche Scientifique, France D’Arcy Renee Meyer-Dombard, University of Illinois at Chicago, USA. HIGH-TEMPERATURE METHANE AND SULFUR CYCLING The microbial processes that generate, consume or modify the carbon and energy sources that are available at the sediment surface (for example sulfide, DIC and methane) extend into the hydrothermal sediments of Guaymas Basin.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.