Abstract

Textile industry generates large quantities of wastewater. Discharging effluent of textile industry without treatment is led to the degradation of the quality of receiving water bodies.A high color, high BOD/COD and salt (Total Dissolved Solids, TDS) load are founded in the textile wastewater. Several alternative of methods,including physico-chemical methods such as filtration, carbon activated, coagulation and chemical flocculation have been used to treat textile industry wastewater. Although these methods are effective, but they are expensive and result concentrated sludge that creates a secondary disposal problem. The passive uptake of organic and inorganic species including metals and dyes from aqueous solutions by the use of non-growing/living microbial mass or their derivatives is namely biosorption.The effects of pH, weight of biosorbent, contact time and size of biosorbent in biosorption process using Bjerkandera adusta in synthetic textile wastewater were investigated and optimized using response surface methodology (RSM). The optimum removal conditions were determined at pH 4, contact time 90 minutes, weight of biosorbent 3000 mg/L, and size of biosorbent 0.4 mm. Color removal of 53.55% was demonstrated, the experimental data and model predictions agreed well. In the optimization, R2 and 2correlation coefficients for the quadratic model was estimated quite satisfactorily as 0.988 and 0.977, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.