Abstract

In this paper, the biosorption mechanisms of uranium on an aerobic Bacillus sp. dwc-2, isolated from a potential disposal site for (ultra-) low uraniferous radioactive waste in Southwest China, was explored by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, FT-IR spectroscopy, proton induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). The biosorption experiments for uranium were carried out at a low pH (pH 3.0), where the uranium solution speciation is dominated by highly mobile uranyl ions. The bioaccumulation was found to be the potential mechanism involved in uranium biosorption by Bacillus sp. dwc-2, and the bioaccumulated uranium was deposited in the cell interior as needle shaped particles at pH 3.0, as revealed by TEM analysis as well as EDX spectra. FTIR analysis further suggested that the absorbed uranium was bound to amino, phosphate and carboxyl groups of bacterial cells. Additionally, PIXE and EPBS results confirmed that ion-exchange also contributed to the adsorption process of uranium. All the results implied that the biosorption mechanism of uranium on Bacillus sp. is complicated and at least involves bioaccumulation, ion exchange and complexation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.