Abstract

Biosorption of uranium and lead by lyophilized cells of Streptomyces longwoodensis was examined as a function of metal concentration, pH, cell concentration, and culture age. Cells harvested from the stationary growth phase exhibited an exceptionally high capacity for uranium (0.44 g U/g dry weight) at pH 5. Calculated values of the distribution coefficient and separation factor indicated a strong preference of the cell mass for uranyl ions over lead ions. The specific uranium uptake was similar for the cell wall and the cytoplasmic fraction. Uranium uptake was associated with an increase in hydrogen ion concentration, and phosphorus analysis of whole cells indicated a simple stoichiometric ratio between uranium uptake and phosphorus content. It is proposed that metal ions are bound to phosphodiester residues present both in the cell wall and cytoplasmic fractions. Based on this model, it was shown that uranium accumulation exhibits a maximum at pH 4.6 that is supported by experimental data from previous investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.