Abstract
Sorption technologies have been proposed for the treatment of water containing methylene blue (MB), a toxic and persistent pollutant. Despite its environmental risks, the role of process variables in MB removal has not been fully explored through experimental design. The objective of this study is to assess the potential of bone meal powder (BMP), an underexplored agricultural byproduct, as an affordable adsorbent for the removal of MB from water. BMP was subjected to a series of analytical characterization techniques, and its adsorption capacity was evaluated through a comprehensive factorial design, which investigated the effects of biosorbent dosage, solution pH, and initial MB concentration. The study revealed that the highest adsorption level was 14.49 mg g−1, attained under the following conditions: 1 g L−1 BMP, pH 11, and 100 mg L−1 MB. The adsorption equilibrium was reached within 60 min, with a measured capacity (qexp) of 18 mg g−1. Theoretical adsorption isotherms indicated a capacity of 63 mg g−1, which aligned well with the Langmuir model. To predict adsorption outcomes, machine learning models were applied, with multiple linear regression performing best. Optimization of decision trees and neural networks improved accuracy but risked overfitting. FT-IR, XRD, and ICP analyses indicated ion exchange as a significant mechanism of adsorption. In desorption studies, H2SO4 was the most effective agent, achieving 68.72% desorption efficiency. BMP exhibited optimal recyclability for up to four cycles before efficiency declined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.