Abstract

Soil, the basic resource for the life on earth is getting polluted because of the release of different contaminants into it. So, the reduction of soil pollution is the main thrust of most researchers. The contaminants include different components released from different industries and the waste is getting accumulated in the soil because of improper processing. Electronic waste is the most up growing waste in the world. As the electronic industries are progressing the waste that is produced after the usage of the products is also increasing day by day. As a result, the heavy metals which are the main components in electronic goods leach and accumulate in the soil because of informal processing procedures. Poisonous substances such as lead, tin, mercury, cadmium and barium which are the constituents of the electronic goods get discharged into the environment and cause serious health and pollution problems if the electronic waste is not processed properly. The present study focuses on biosorption of lead, an important component of many electronic goods by Bacillus licheniformis isolated from E-waste dump yard soil in Hyderabad, Telangana, India. The adsorption studies were carried out using Atomic adsorption spectrophotometer. The adsorption capability of Bacillus licheniformis with different metal concentrations ranging from 10ppm to 25ppm was analyzed and it was observed that the bacteria could reduce 74.94% of 10ppm, 78.9% of 15ppm, 83% of 20ppm and 89.39% of 25ppm lead from the medium. Temperature has a prominent role in metal adsorption by bacteria. At 310C and 370C the adsorption was high. The % of metal adsorbed at 160C was 30.56%, at 310C (Room Temperature) was 56.54 % at 370C was 58.79% and at 60 0C it was 36.31%. The present study is proposed to explore bacteria for the determination of their tolerance capacity in and around the areas of Hyderabad where heavy metal ions are leached and observe for their biotransformation capabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.