Abstract
The biosorption of heavy metals Hg(II) and Cu(II) from aquatic solution by biomass of dried Sargassum fusiforme was studied in the paper. The Sargassum fusiforme was able to absorb appreciable amount of mercury and copper from the aquatic solutions within 60 min of contact time with the metal solution and exhibited high removal of mercury and copper at low equilibrium concentrations. The specific adsorption of both Hg(II) and Cu(II) increased at low concentration of biomass and decreased when biomass concentration exceeded 2.0 g/L. The binding of mercury followed Freundlich model while copper supported Langmuir isotherm for adsorption with their r2 values of 0.971 and 0.923, respectively. The maximum adsorption per unit masses of Sargassum fusiforme (mg/L) at equilibrium (qmax) for Hg(II) and Cu(II) were calculated to be 30.86 and 7.69 mg/g, respectively. The biosorption by Sargassum fusiforme was best described using a pseudo-second-order kinetic model for copper and mercury ions in solution in the study. The adsorption was pH dependent as the maximum mercury biosorption and copper adsorption was happened at solution pH of 8–10.
Highlights
The heavy metal is among the most common pollutant found in industrial effluents
Biosorption is a property of certain types of inactive, dead biomass to bind and concentrate heavy metals from even very dilute aqueous solutions [4]
Results revealed the maximum biosorption of Hg(II) were at pH 8(70%) and 10(72%) and Cu(II)
Summary
The heavy metal is among the most common pollutant found in industrial effluents. The major sources of pollution in the aquatic environment are industries such as paint, pulp and paper, oil refining, electrical, rubber, processing, fertilizer, pharmaceutical and battery manufacturing [1,2]. Over the past two decades, much effort has been directed at identifying readily available biomass which, in its nonliving state, is capable of effectively removing heavy metals. It has been demonstrated that biosorption is a potential alternative to traditional treatment processes of metal ions removal. Biosorption is a property of certain types of inactive, dead biomass to bind and concentrate heavy metals from even very dilute aqueous solutions [4]. Biomass exhibits this property, acting just as a chemical substance, as an ion exchange of biological origin. Research on biosorption is revealing that it is sometimes a complex phenomenon where the metallic species could be deposited in the solid biosorbent through different sorption processes of ion exchange, complexation, chelation, microprecipitation, etc
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Environmental Health Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.