Abstract

The performance of nonviable P. mutilus for removal of Crystal Violet (CV) and Basic Red 46 (BR46) was investigated in single and binary systems. Batch kinetic studies were carried out as a function of pH, temperature, biomass amount, and dye concentration to determine the decolorization efficiency of biosorbent. In single system, the biosorption capacities of P. M. reached 166 and 76.92 mg/g for CV and BR46, respectively. A comparison of kinetic models applied to the adsorption of basic dyes onto P. Mutilus was evaluated for the pseudo‐second‐order and intraparticle diffusion kinetics models. The experimental data fitted very well the pseudo‐second‐order kinetic model, whereas diffusion is not only the rate‐controlling step. The thermodynamic study indicates that the adsorption of dyes is spontaneous and endothermic process. In binary system, the biosorption capacities of P. Mutilus for both dyes decreased significantly compared to that in single system. Competitive coefficients calculated on a concentration basis using Sheindorf‐Rebhun‐Sheintuch (SRS) equation were useful for describing the degree of competitive interaction in P. M.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.