Abstract

An amphiphilic poly(L-lysine·HBr)-block-poly(L-leucine) (KL) diblock copolypeptide and its supramolecular assembly are used as a template to direct silica formation, which proceeds by a cooperative process involving biomimetic mineralization and copolypeptide reassembly under ambient conditions. Various silica structures can be obtained by using different counterions, changing the chain length of the KL diblocks, and applying a sol-gel mineralization method. We find that the chain length of the KL diblock is an important factor in terms of controlling biosilica morphologies. We also find that the nature of the counterions strongly affects the resulting silica structures. For the same KL diblock, variation of anions from phosphate to sulfate and to carbonate can produce hexagonal silica platelets, silica rods, and fused silica platelets, respectively. In contrast, application of a sol-gel method can replicate the copolypeptide fibril network morphology in water, while employment of ultrasonication to the sol-gel medium transforms the silica fibrils to rigid silica rods. The resulting silica morphology has been systematically characterized using SEM and TEM, and the polypeptide conformation is explored using FT-IR and CD spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call