Abstract
Esters are valuable aroma compounds and can be produced enzymatically by Baeyer-Villiger monooxygenases (BVMOs) from (aliphatic) ketone precursors. However, a genetically encoded biosensor system for the assessment of BVMO activity and the detection of reaction products is missing. In this work, we assembled a synthetic enzyme cascade - featuring an esterase, an alcohol dehydrogenase, and LuxAB - in the heterologous host Escherichia coli. Target esters are produced by a BVMO, subsequently cleaved, and the corresponding alcohol oxidized through the artificial pathway. Ultimately, aldehyde products are detected in vivo by LuxAB, a luciferase from Photorhabdus luminescens that emits bioluminescence upon the oxidation of aldehydes to the corresponding carboxylates. This biosensor system greatly accelerated the screening and selection of active BVMO variants from a focused library, omitting commonly used low-throughput chromatographic analysis. Engineered enzymes accepted linear aliphatic ketones such as 2-undecanone and 2-dodecanone and exhibited improved ester formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.