Abstract
Measuring telomerase activity has proven successful for the determination of cancer in malignant somatic cells. Early conventional methods for the detection of telomerase activity include in vitro analysis via a primer extension assay, and the telomeric repeat amplification protocol (TRAP) assay. TRAP incorporates the polymerase chain reaction (PCR) step to increase the sensitivity of a given sample. However, research suggests that the TRAP technique suffers from false negative results, caused by failure of its PCR step. Other limitations of TRAP include the post-PCR steps involving polyacrylamide gel electrophoresis which are time inefficient. Thus, various efforts have been made to eliminate the PCR step of TRAP by using a variety of biosensor detection devices. This review mainly focuses on these alternatives including: optical, electrochemical, magnetic, and nanowire conductive signaling techniques to measure the telomerase activity produced via label free biosensor assay-via biocatalytic labels involving beacons, DNAzyme, ferrocenyl-naphthalene diimides, avidin-alkaline phosphatase and semiconductor quantum dots (QDs). These biosensor techniques are sensitive and provide precise and rapid results in the detection of telomerase activity.
Highlights
Cancer is a group of diseases characterized by cell invasion, uncontrollable growth, and metastatic behavior into surrounding tissues or distant organs [1]
Sato et al [45], used a biocatalytic technique which provides an electrochemical signal which is based on ferrocenylnaphthalene diimide (figure 8A (1)) which can bind to tetraplex DNA by using telomerase from HeLa cancer cells
Pavlov et al demonstrated that the amplification pathway for the telomerase activity of HeLa cancer cells can be detected via the Avidin-alkaline Phosphatase label [46]
Summary
Cancer is a group of diseases characterized by cell invasion, uncontrollable growth, and metastatic behavior into surrounding tissues or distant organs [1] It has become the second leading cause of death in the United States, heart disease being number one [2]. The very first detections of telomerase were direct telomerase activity assays, which included an oligonucleotide (as a substrate for the elongation process of telomerase), a cell extract, and a deoxynucleotide triphosphate (dNTP) mixture [25]. Using end-labeled substrate oligonucleotides or by incorporation of radioactive dNTP precursors, the activity of telomerase was analyzed [25,26]. The present review paper is aimed to give a short overview of these novel methods
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.