Abstract
This work reports a bi-enzymatic biosensor for monitoring uric acid (UA) in biofluids extracted from wound, perilesional skin and healthy skin. The biosensor is composed of uricase (UOx) as a biocatalyst for UA oxidation, horseradish peroxidase (HRP) for electron transfer and a nanocomposite of multi-walled carbon nanotubes (MWCNTs) and Au nanoparticles (AuNPs) as the substrate. The bi-enzymatic approach provided a two-fold enhancement in current response, while the nanocomposite facilitated higher enzyme loading and fast electron transfer enabling a 2-fold increase in current response. The biosensor was able to measure UA levels in human wound exudate and in biofluids extracted from perilesional and healthy skin. The biosensor exhibited a lowest detectable concentration of 9.91 μM with a sensitivity of 2.5 nA μM−1. The UA levels in wound exudate and biofluid extract from perilesional skin were 3.7 and 1.2 times higher than in healthy skin. This result opened a potential way to use the biofluid in wound proximity as a biomarker for prolonged measurements, preventing electrode occlusion and sensor fouling by the wound debris. The electrode fouling studies demonstrated that the electrode with adsorbed wound exudate had 1.5 times reduction in current compared to electrode adsorbed with biofluid extract from perilesional skin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.