Abstract

Evolutionary engineering is a powerful method to improve the performance of microbial cell factories, but can typically not be applied to enhance the production of chemicals due to the lack of an appropriate selection regime. We report here on a new strategy based on transcription factor-based biosensors, which directly couple production to growth. The growth of Corynebacterium glutamicum was coupled to the intracellular concentration of branched-chain amino acids, by integrating a synthetic circuit based on the Lrp biosensor upstream of two growth-regulating genes, pfkA and hisD. Modelling and experimental data highlight spatial separation as key strategy to limit the selection of ‘cheater’ strains that escaped the evolutionary pressure. This approach facilitated the isolation of strains featuring specific causal mutations enhancing amino acid production. We envision that this strategy can be applied with the plethora of known biosensors in various microbes, unlocking evolution as a feasible strategy to improve production of chemicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call