Abstract

Biosensors can play an important role in early disease detection, a reason why they are gaining more attention in the world of biomedicine. Functionalization of the material used in the detector is of a great importance since it maintains the molecule’s structure of interest with minimal changes. We report on sensing BSA molecules, solutions, and concentrations using a functionalized commercial resistor in a simple electric circuit. Our results demonstrate the outstanding utility of functionalization in biosensing devices; while sensing is not possible with a naked resistor, a BSA covered resistor can detect a very low solution concentration around 0.1 fM. A smaller molecule like tryptophan was also used in order to functionalize the resistor. After proving that tryptophan is more effective in covering the resistor before sensing, BSA molecules in other solvent conditions were detected, and a threshold of 1 μM was obtained. This can prove that sensing depends on the choice of the functionalizations of the material used for sensing and on the conformation of the molecule of interest in its solutions. This method of detection may be of great interest in triggering and sensing biological molecules using simple-based devices.

Highlights

  • Electric biosensors are devices combining a biological part with an electric part [1]

  • Nanostructures are being used in biological detection as they offer many advantages such as broadening the area available for electrochemical detection, accelerating detection by propelling the electrons faster, and/or acting as a landing dock or attachment site for biomolecules [3], and the field effect transistors (FETs) based on ion selectivity (ISFETs) are the most attractive models [4]

  • The first step involved measuring the current values without any prior functionalization

Read more

Summary

Introduction

Electric biosensors are devices combining a biological part (enzymes, antibiotics, phages, aptamers, or ssDNA) with an electric part (electrochemical, optical, thermometric, piezoelectric, or magnetic) [1]. Biosensors track biomarkers; the presence or absence of a biomarker is an indication that can be used to diagnose a disease, so the lower the concentration of detection during screening is, the earlier the detection and subsequent treatment can commence [2]. Scientists have been struggling to find methods and techniques that allow detection at the lowest concentration possible with minimal biological modification. The delicacy of biomolecules has steered scientists into designing alternative detection models that involve minimal chemical manipulation such as using currents or radiation to conserve biological integrity [5]. One of the available options is to use electric detection as an alternative to chemical treatment [6]. With the use of electric conductors, semiconductors, and superconductors, electric current can be used in a way to detect the molecule of interest

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call