Abstract

The sensitivity of the gold nanoshell localized plasmon resonance (LPR) to the local dielectric environment is studied in terms of a multilayered sphere with a silica core, gold nanoshell, and two dielectric layers modeling the primary functionalization of gold surface and the secondary binding of target biomolecules. The adsorption-induced changes in the extinction and scattering spectra are analyzed by the dipolar Rayleigh approximation and multilayered Mie codes for gold shell diameters of 20–160 nm and (gold shell thickness)/(gold shell diameter) ratios of 0.025–0.75. To calculate the optical polarizability of a multilayered particle, we develop a simple analytical method based on the dipole equivalency principle as applied to a multilayered conjugate and its homogeneous counterpart. This is used to derive simple relations between the local dielectric environment parameters and the gold nanoshell structure. Our analysis predicts greater sensitivity of nanoshell's LPR to the local dielectric environment compared to the solid gold spheres, whereas the absolute changes in spectral maxima are less than those for the equivolume spheres. By contrast, the differential extinction and scattering spectra of gold nanoshells can be used as a sensitive tool for optical monitoring of biomolecular binding onto nanoshell surface. The maximal local-environment sensitivity has been found for the gold (shell/radius) ratios within the range 0.2–0.4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.