Abstract

Hexavalent chromium or Cr(VI) enters the environment through several anthropogenic activities and it is highly toxic and carcinogenic. Hence it is required to be detected and remediated from the environment. In this study, low-cost and environment-friendly methods of biosensing and bioremediation of Cr(VI) have been proposed. Crude cell free extract (CFE) of previously isolated Enterobacter aerogenes T2 (GU265554; NII 1111) was prepared and exploited to develop a stable biosensor for direct estimation of Cr(VI) in waste water, by using three electrodes via cyclic voltammetry. For bioremediation studies, a homogeneous solution of commercially available sodium alginate and CFE was added dropwise in a continuously stirred calcium chloride solution. Biologically modified calcium alginate beads were produced and these were further utilized for bioremediation studies. The proposed sensor showed linear response in the range of 10–40 μg L−1 Cr(VI) and the limit of detection was found to be 6.6 μg L−1 Cr(VI). No interference was observed in presence of metal ions, e.g., lead, cadmium, arsenic, tin etc., except for insignificant interference with molybdenum and manganese. In bioremediation studies, modified calcium alginate beads showed encouraging removal rate 900 mg Cr(VI)/m3 water per day with a removal efficiency of 90%, much above than reported in literature. The proposed sensing system could be a viable alternative to costly measurement procedures. Calcium alginate beads, modified with CFE of E. aerogenes, could be used in bioremediation of Cr(VI) since it could work in real conditions with extraordinarily high capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call