Abstract

Abstract Tropical cyclones (TCs) routinely transport organisms at their centers of circulation. The TC center of circulation is also often marked by an inversion, and the height of the inversion base may change as the TC intensifies or weakens. In this study, a dataset of 49 dropsonde-measured inversions in 20 separate Atlantic Ocean TCs is compared with spatiotemporally collocated polarimetric radar measurements of bioscatter. Bioscatter signature maximum altitude is found to be a function of temperature lapse rate across the inversion base (r = 0.473), and higher inversion bases were generally associated with denser bioscatter signatures, especially when strong hurricanes (minimum pressure < 950 hPa) were considered (r = 0.601). Characteristics of the bioscatter signature had some skill in predicting TC inversion characteristics (adjusted r2 of 16%–40%), although predictability was increased when TC intensity was also included as a predictor (adjusted r2 of 40%–59%). These results indicate promise for using the bioscatter signature to monitor the TC inversion and represent an example of a situation in which the behavior of organisms in the airspace may be indicative of ongoing atmospheric processes. Significance Statement Tropical cyclone centers of circulation are often associated with an inversion, the base of which changes altitude with system strengthening and weakening. They may also contain a radar-observable bioscatter signature. In this study, we wanted to determine how the bioscatter signature relates to inversion characteristics for the benefit of meteorologists and biologists. Bioscatter signature characteristics were related to strength of the temperature and dewpoint lapse rates across the inversion base, and deeper/denser bioscatter signatures were typically associated with higher inversion bases. The findings suggest that trends in tropical cyclone inversion characteristics could be remotely monitored via the bioscatter signature. They also support prior speculation that some birds may seek the relatively laminar flow above an inversion base.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call