Abstract
Mesoporous silica nanoparticles (MSNs) have attracted the attention of chemists, who have developed numerous systems for the encapsulation of a plethora of molecules, allowing the use of mesoporous silica nanoparticles for biomedical applications. MSNs have been extensively studied for their use in nanomedicine, in applications such as drug delivery, diagnosis, and bioimaging, demonstrating significant in vivo efficacy in different preclinical models. Nevertheless, for the transition of MSNs into clinical trials, it is imperative to understand the characteristics that make MSNs effective and safe. The biosafety properties of MSNs in vivo are greatly influenced by their physicochemical characteristics such as particle shape, size, surface modification, and silica framework. In this review, we compile the most relevant and recent progress in the literature up to the present by analyzing the contributions on biodistribution, biodegradability, and clearance of MSNs. Furthermore, the ongoing clinical trials and the potential challenges related to the administration of silica materials for advanced therapeutics are discussed. This approach aims to provide a solid overview of the state-of-the-art in this field and to encourage the translation of MSNs to the clinic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.