Abstract

AbstractEmerging adsorption technology shows great potential for Pb2+ removal in the human body because of its high adsorption efficiency and easy operation. However, biosafety concerns in the human body limit the development of adsorbents in integrated lead removal for acute poisoning in humans from the gastrointestinal tract and even the blood. In this work, highly bio‐safe and natural saccharomyces cerevisiae cells are immobilized on the interworking natural regenerated cellulose nanofibers network for integrated lead removal in the human body. High intrinsic biosafety of the aerogel is guaranteed due to the biocompatibility of aerogel composition and the absence of cross‐linking substances. Attributing to the porous structure of cellulose nanofibrous scaffolds, saccharomyces cerevisiae cells are protected from shedding, and considerable loading sites for saccharomyces cerevisiae cells are ensured. Simultaneously, abundant functional groups on the saccharomyces cerevisiae cells exhibit superior adsorption ability with a saturated adsorption capacity of lead ions as high as 107 mg g−1 in the aquatic environment. After adsorption, Pb2+ concentration decreases from 879.70 to 248.53 µg L−1 in the intestinal phase and from 400 to 186.29 µg L−1 (within a safe level) in blood, providing an attractive strategy for detoxification of integrated lead in the human body.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.