Abstract

The original negative selection algorithm (NSA) has the disadvantages that many “black holes” cannot be detected and excessive invalid detectors are generated. To overcome its defects, this paper improves the detection performance of NSA and presents a kind of bidirectional inhibition optimization r-variable negative selection algorithm (BIORV-NSA). The proposed algorithm includes self set edge inhibition strategy and detector self-inhibition strategy. Self set edge inhibition strategy defines a generalized radius for self individual area, making self individual radius dynamically be variable. To a certain extent, the critical antigens close to self individual area are recognized and more non-self space is covered. Detector self-inhibition strategy, aiming at mutual cross-coverage among mature detectors, eliminates those detectors that are recognized by other mature detectors and avoids the production of excessive invalid detectors. Experiments on artificially generating data set and two standard real-world data sets from UCI are made to verify the performance of BIORV-NSA, by comparison with NSA and R-NSA, the experimental results demonstrate that the proposed BIORV-NSA algorithm can cover more non-self space, greatly improve the detection rates and obtain better detection performance by using fewer mature detectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call