Abstract

A biorthonormal transfer-matrix renormalization-group (BTMRG) method for non-Hermitian matrices is presented. This BTMRG produces a dual set of biorthonormal bases to construct the renormalized transfer matrix with only half the dimensions of the matrix of a conventional transfer-matrix renormalization group (TMRG). We show that under generic conditions, such biorthonormal bases always exist. Based on a special E·S·E scheme (where S and E represent the system and environment blocks, respectively, and the two dots in between represent two additional physical sites), the BTMRG method can achieve zero truncation of any reduced state in describing both current left and right Perron states so as to reach a high degree of efficiency and accuracy. We believe that the BTMRG constitutes a more powerful and robust tool than conventional TMRG for non-Hermitian matrices and that it would allow us to better understand the collective behaviors and emerging phenomena of strongly correlated many-body systems. We also show that this scheme is particularly adapted to the calculation of the two-site correlation function of a one-dimensional quantum or two-dimensional classical lattice model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.