Abstract
Starting with Hermite cubic splines as the primal multigenerator, first a dual multigenerator onR is constructed that consists of continuous functions, has small support, and is exact of order 2. We then derive multiresolution sequences on the interval while retaining the polynomial exactness on the primal and dual sides. This guarantees moment conditions of the corresponding wavelets. The concept of stable completions (CDP) is then used to construct the corresponding primal and dual multiwavelets on the interval as follows. An appropriate variation of what is known as a hierarchical basis in finite element methods is shown to be an initial completion. This is then, in a second step, projected into the desired complements spanned by compactly supported biorthogonal multiwavelets. The masks of all multigenerators and multiwavelets are finite so that decomposition and reconstruction algorithms are simple and efficient. Furthermore, in addition to the Jackson estimates which follow from the exactness, one can also show Bernstein inequalities for the primal and dual multiresolutions. Consequently, sequence norms for the coefficients based on such multiwavelet expansions characterize Sobolev normsk¢k Hs.(0;1)/ for s 2 .i0:824926; 2:5/. In particular, the multiwavelets form Riesz bases for L2.(0; 1)/.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.