Abstract

The study of greedy approximation in the context of convex optimization is becoming a promising research direction as greedy algorithms are actively being employed to construct sparse minimizers for convex functions with respect to given sets of elements. In this paper we propose a unified way of analyzing a certain kind of greedy-type algorithms for the minimization of convex functions on Banach spaces. Specifically, we define the class of Weak Biorthogonal Greedy Algorithms for convex optimization that contains a wide range of greedy algorithms. We analyze the introduced class of algorithms and establish the properties of convergence, rate of convergence, and numerical stability, which is understood in the sense that the steps of the algorithm are allowed to be performed not precisely but with controlled computational inaccuracies. We show that the following well-known algorithms for convex optimization — the Weak Chebyshev Greedy Algorithm (co) and the Weak Greedy Algorithm with Free Relaxation (co) — belong to this class, and introduce a new algorithm — the Rescaled Weak Relaxed Greedy Algorithm (co). Presented numerical experiments demonstrate the practical performance of the aforementioned greedy algorithms in the setting of convex minimization as compared to optimization with regularization, which is the conventional approach of constructing sparse minimizers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.