Abstract

Design of water-soluble prodrugs may constitute a means to improve the oral bioavailability of drugs suffering from dissolution rate-limited absorption. The model drug bupivacaine containing a tertiary amine function has been converted into bioreversible quaternary N-acyloxymethyl derivatives. The pH-independent solubility of the N-butanoyloxymethyl derivate exceeded 1000 mg ml −1 corresponding approximately to a 10,000-fold increase in water solubility compared to that of bupivacaine base. The kinetics of hydrolysis of the prodrugs was studied in the pH range 0.1–9.8 (37 °C). Decomposition was found to follow first-order kinetics and U-shaped pH-rate profiles were constructed. The observed differences between the hydrolytic lability of the derivatives might most likely be ascribed to steric effects. In most cases, the prodrugs were quantitatively converted into bupivacaine. However, for the hydrolysis of the N-butanoyloxymethyl derivative at neutral to slightly alkaline pH parallel formation of bupivacaine (∼80%) and an unknown compound X (∼20%) was observed. LC–MS analysis of the latter compound suggests that an aromatic imide structure has been formed from an intramolecular acyl transfer reaction involving a nucleophilic attack of the amide nitrogen atom on the ester carbonyl carbon atom. Whereas the derivatives were poor substrates for plasma enzymes; they were hydrolyzed rapidly to parent bupivacaine in the presence of pancreatic enzymes (simulated intestinal fluid) at 37 °C. The data indicate that such prodrugs possess sufficient stability in the acidic environment of the stomach to reach the small intestine in intact form where they can be cleaved efficiently by action of pancreatic enzymes prior to drug absorption. Thus, the N-acyloxymethyl approach might be of potential utility to enhance oral bioavailability of tertiary amines exhibiting p K a values below approximately 6 and intrinsic solubilities in the low μM range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call