Abstract

Nonviral gene therapy continues to require novel synthetic vectors to deliver therapeutic nucleic acids effectively and safely. The majority of synthetic nonviral vectors employed in clinical trials to date have been cationic liposomes; however, cationic polymers are attracting increasing attention. One of the few cationic polymers to enter clinical trials has been polyethylenimine (PEI); however, doubts remain over its cytotoxicity, and in addition it displays lower levels of transfection than viral systems. Herein, we report on the development of a series of small molecule analogues of PEI that are bioresponsive to the presence of pDNA, forming poly(disulfide)s that are capable of efficacious transfection with no associated toxicity. The most effective small molecule developed, a cyclic disulfide based upon a spermine backbone, is shown to form very well-defined polyplexes (100-200 nm in diameter) that mediate murine lung transfection in vivo to within an order of magnitude of in vivo jetPEI, and at the same time display a much improved cytotoxicity profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.