Abstract
This study explores microalgae-based bioremediation for treating black gunpowder production effluents, an understudied yet environmentally significant stream. Two native microalgae, Chlorella sp. MC18 (CH) and Scenedesmus sp. MJ23-R (SC), were assessed for growth kinetics and nutrient removal capabilities in culture media containing different proportions of untreated raw wastewater. Results show both species thrived in 100 % raw wastewater, displaying robust growth and substantial biomass production in parallelepiped-shaped photobioreactors. SC showed superior performance, with higher maximum specific growth rate (0.549 d−1), biomass yield (454.57 mg L−1) and biomass productivity (64.94 mg L−1 d−1) compared to CH (0.524 d−1, 380.60 mg L−1, 54.37 mg L−1 d−1, respectively). The use of 100 % raw wastewater as a culture medium eliminated the need for additional freshwater input, thus reducing the water footprint. The bioremediation process also resulted in a high removal efficiency in turbidity (>95 % CH, >76 % SC), total suspended solids (>93 % CH, >74 % SC), biochemical oxygen demand (BOD5) (>62 % CH, >93 % SC) and chemical oxygen demand (COD) (>63 % CH, >87 % SC), bringing the effluent into compliance with environmental regulations. Although nitrogen (>45 % CH, >57 % SC) and sulphate (>43 % CH, >35 % SC) removal efficiencies was high, potassium bioremediation was limited (<6 %). The proximate chemical composition of the microalgal biomass revealed different allocations to carbohydrates, lipids and proteins. The results suggest promising applications for biofuel production and aquaculture. This research highlights the potential of microalgae-based bioremediation for sustainable wastewater management in the explosives industry, contributing to the UN Sustainable Development Goals and promoting green industrial practices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.