Abstract

ABSTRACTThis work evaluated the effect of bioremediation treatments including natural attenuation, bioaugmentation, biostimulation as well as combined biostimulation and bioaugmentation on degradation of 4-nitrotoluene (4-NT), 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) in soil microcosms. Bioaugmentation with a previously isolated NTs-degrading bacterium, Rhodococcus pyridinivorans NT2, showed an 86–88% decrease in 4-NT, 2,4-DNT or 2,6-DNT after 60 days. Irrespective of the substrate types, least degradation (6–6.5%) was observed in abiotic control. The addition of β-cyclodextrin or rhamnolipid significantly improved NTs degradation efficiency in soil (18.5–74%) than natural attenuation (22–25%). Exogenous addition of preselected bacterial isolate NT2 along with β-cyclodextrin/rhamnolipid resulted in the greatest number (1.8× and 2.5× high) of total heterotrophic aerobic bacteria and NT degraders, respectively, compared to natural attenuation. Irrespective of the treatment types, the population of NT degraders increased steadily in the first 5 weeks of incubation followed by a plateau within the next few weeks. The treatment BABS2 (Soil + rhamnolipid + NT2) yielded highest microbial-C and -N and dehydrogenase activity, consistent with results of NTs degradation and microbial counts in combined bioaugmentation and biostimulation. Thus the results of this study suggest that bioaugmentation by R. pyridinivorans NT2 may be a promising bioremediation strategy for nitroaromatics-contaminated soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call