Abstract
The elimination of poisonous wastes (e.g., heavy metals) from polluted water remains challenging, both in industrialized societies and developing countries. To overcome this human health and environmental issue, biotechnology (e.g., biosorption, bioaccumulation) is being applied as an economic and eco-friendly option compared to physicochemical methods (e.g., adsorption, membrane filtration, and coagulation–flocculation). The development of the appropriate biotechnology process (i.e., bioremediation) requires more accurate information and details, which are possible to obtain through the design of a set of resources and various computer applications. In sustainable remediation, microorganisms are one of the feasible choices for modifying and remaking the natural condition. In this in silico study, the methanotroph Methylocystis hirsuta (M. hirsuta) was used for the first time to simulate the removal of vanadium (Vn) from contaminated water through two-dimensional (2D) and three-dimensional (3D) modeling using COMSOL 4.4 software. Rotating machinery-laminar flow, transport of diluted species, and reaction engineering physics were also used. Independency analyses of the numerical network, concentration contour, velocity contour, concentration–time, and velocity–distance charts were also calculated. The data consistently showed that the removal of Vn increased with increasing velocity (which depends on time). Indeed, the amount of pollutant removal at 120 rpm, 160 rpm, and 200 rpm was maintained at 10%, 12%, and 12%, respectively. The simulation results showed excellent conformity (less than 20%) with previously reported laboratory results. This proposed model of bioremediation is thus a reliable and accurate solution for the removal of heavy metals (i.e., Vn and possibly others) from polluted areas (such as contaminated water).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Sustainability
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.