Abstract

Safety of environment and human health has newly become crucial factors when selecting crops production programs. With regard to nematicides, oxamyl is a systematic nematicide widely used for the control of soil nematodes. Accelerated biodegradation of the oxamyl, utilized at the recommended dose in soil cultured by banana plants and coupled with root-knot nematode (RKN, Meloidogyne incognita), was observed using algal bioassay studies. However, algae play an important role in maintaining micro and macro elements availability, plant biochemical process, nitrogen fixation, photosynthesis and rebate the harmful effect of pesticides through degradation. For this reason, algae such as: Chlorella vulgaris, Scenedesmus obliquus, Anabaena oryza and Nostoc muscorum have been used to determine the degradability enhancement of oxamyl by an accelerated biodegradation process. All oxamyl-degrading species showed a highly effective to enhance biodegradation of oxamyl compound. Memorable, the alga S. obliquus was the most successful one for oxamyl degradation that denoted by the least residue in plant was 25% and oxamyl degradation in untreated soil by algae was 100% and had an active promoting effect on plant health. Unlike, the incorporated application of alga, C. vulgaris was the most successful action in diminishing the nematode, juveniles2 count in soil (57.55%) and galls count on roots (52.87%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call